
Geoprocessing with ModelBuilder
and Python

Jeremiah Lindemann
ESRI Denver

AGIC 2005 Conference
Prescott, AZ

Workshop agenda
• Geoprocessing
• Introduction to Modelbuilder

– Building and running models
– Exporting models

• Introduction to Python
– Scripting overview
– Python language
– Batch Processing
– Making Scripts Dynamic

Geoprocessing and Models

What is geoprocessing?

• Perform a variety of geographic based tasks

Database

Projections

Conversion

CAD GDB

Spatial Analysis

Proximity?Proximity?

Data Management

Geoprocessing framework
• Multiple environments

ModelsModels

Command LineCommand Line

Tool dialogTool dialog

ScriptsScripts

• Dockable window
• Toolboxes and tools: functionally

ordered tree view
• Number of tools depends on

license
• Tools can be used in models

ArcGIS extensions
Business Analyst
Spatial Analyst
3D Analyst
Geostatistical Analyst
Network Analyst
Data Interoperability

ArcToolbox

Tools and licensing

• The tools vary depending on license/extensions
– ArcView: 159 tools
– ArcEditor: 184 tools
– ArcInfo: 216 tools

– More tools available with additional extensions

Types of models

• Repetitive tasks
– Minimize grunt work
– Efficiently execute

frequently used tools

• Suitability models
– Use to find best location

(businesses, vineyards, evacuation centers)

• Process models
– Show the landscape as conditions change

(fire spreads, rivers flood, oil slicks move)

Best store location

Filling a reservoir

GIS data layers

Introduction to Modelbuilder

ModelBuilder

Why use ModelBuilder?

• Fast analysis
• Re-execute the same model, slightly changing

parameters to see how end results differ
• Complex analysis
• Graphical documentation of work

Project data Tool Derived data

Model elements
• Project data: Data that exists before model

is run
– Blue oval

• Tool: Operation performed on input data
– Yellow-orange rectangle

• Derived Data: Output data created by a
function
– Green oval

• Process: Set of elements
– Run one process at a time

or all at once

Process

Process

Process

Model

Project
data

Project
data

Tool

Tool

Tool

Derived
data

Derived
data

Derived
data

Creating a model

Create a new
user toolbox

Add ArcToolbox
dockable window

1.

2.

ModelBuilder
window opens

Right-click new toolbox;
click New > Model

3.

4.

Adding model elements

• Drag and drop from ArcCatalog or ArcMap
– Tools from ArcToolbox
– Data

• Add empty variables
– Supply data source at a later time

Tools within a model

• Right-click or double-click to obtain parameters
– Same dialog as tools from a toolbox

Supported data types

• Works with all data types used in ArcGIS
• Drag and drop data into model from ArcCatalog

CAD

Coverage Geodatabase
Shapefile

Raster

Tables

Geoprocessing

Layer Files

Behavior

Parameters

• Input/Output data and values for a tool
• Used for running model as dialog
• Right-click model element and choose to create

parameter
Data and location

Buffer distance Cell size

Output name and locationInput data

Project Data Function Derived DataProject data Tool Derived data

Running models with parameters

• All parameters in model appear in model dialog

Set Model Properties to
control the parameter
order in the tool dialog

Set Model Properties to
control the parameter
order in the tool dialog

Three states of model elements

• Not ready to run: Parameters not defined
• Ready to run: All elements colored
• Already run: All elements colored and shadowed

Not Ready to Run

Ready to Run

Already Run

Running models

• All parameters created in model appear in model
dialog

How to execute models

• Entire model from ModelBuilder
– Can execute one process at a time from ModelBuilder

• As a tool dialog

Demonstration 1

• Create a toolbox
• Create and run a simple model

– Drag and drop tools and data
– Parameters

Managing derived data

• Set as model parameter
• Add to display

– Derived data is added to ArcMap display
• Intermediate (default)

– Deleting Intermediate data deletes all output data flagged
as intermediate

Embedding models

• Drag and drop model from toolbox
• Output from embedded model must be model

parameter to be exposed in larger model
Embedded Model

Saving and sharing models

• Why share models
– Collaboration
– Refine and standardize models

• Model is saved to .tbx file or in
geodatabase
– Give .tbx or geodatabase to share model

• Set model parameters
if used with different data

Model labels
• Diagram: Free-floating labels
• Element: Maintain position relative to model

elements
• Connector (tool or data): Maintain position relative

to connector

LabelLabel

Label

Element label

Diagram label

Connector label

Exporting and printing models

• Export to a graphic
– Export as .bmp, .jpg, and

.emf
– Place in map layouts

• Export models to scripts
– Python, JScript, and

VBScript
• Printing models

– Modify print settings Area to
print

• Number of pages on which
the model will print

Demonstration 2

• Show how to share the model
• Export to python script

Introduction to Scripting and Python

Python

• Why use scripts and Python?
• Python code structure
• Selected geoprocessing tools
• Getting help with writing scripts
• Batch processing
• Making a script dynamic

Why write scripts for geoprocessing?

• Similar advantages that models have
– Efficiently execute series of different tasks
– Easy to read and document
– Easy to share

• Perform batch operations
• Self contained (single file)
• Run any time
• Familiar environment for AML and Avenue users

Why use Python?

• Flexible, easy scripting language
• Object-oriented
• Offers a debugging environment
• Modular: Can be broken apart
• Cross platform
• It is FREE
• ESRI samples provided

Python
script

Python
script

PythonWin interface
• Menus, toolbars, and

context menus
• Script window

– Write and save code
• Interactive window

– Test lines of code
– Report messages

• Benefits
– Windows look and feel
– All in one application
– Script tools open in

PythonWin

Python Overview

• The geoprocessor
• Writing scripts

– Comments
– Variables
– Syntax
– Strings
– Numbers

Writing scripts
• Import COM client support

import win32com.client

• Instantiate the Geoprocessor object
gp = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")

• Set properties (e.g., workspace)
gp.workspace = "c:\\Florida.mdb"

• Comment code
Buffer roads by 100 meters

• Run tools
gp.Buffer_analysis("roads", "rdbuf100",
"100")

The Geoprocessor ArcObject

• Most geoprocessing functionality on one
ArcObject
– Geoprocessor (GpDispatch)

• The Geoprocessor has many properties and
methods Geoprocessor

Properties
- Current workspace
- Cluster tolerance
- Cell size
Methods
- Buffer
- Clip
- Select
- Import from CAD
- Copy features
- Add field

Geoprocessor
Properties
- Current workspace
- Cluster tolerance
- Cell size
Methods
- Buffer
- Clip
- Select
- Import from CAD
- Copy features
- Add field

Environment
settings

Environment
settings

ToolsTools

Syntax for properties and methods

• To assign a value to a property
Object.Property = Value
gp.Workspace = "C:\\temp"

• To get the value of a property
Object.Property
gp.Workspace

• To use a method
Object.Method (arg, arg, …)
gp.Buffer_analysis (fc,"C:\\temp\\buff.shp",
100)

– Parentheses around arguments
– Arguments separated by commas

• Comment: A non-executable line of code
– # sign
– Comment and uncomment blocks of code to control

execution
Date: July 11, 2005
Purpose: To buffer a feature class.
import win32com.client
gp =win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1")
gp.Workspace =
"C:\\Student\\PYTH\\Database\\SanDiego.mdb"

Buffer the Freeways feature class 1000 feet.
gp.Buffer_analysis ("Freeways", "BuffFreeway", 1000)

Comments

Example: The Buffer tool

• Syntax
Buffer_analysis (in_features,
out_feature_class, buffer_distance_or_field,
line_side, line_end_type, dissolve_option,
dissolve_field)

• Example
gp.Workspace = “D:\\AGIC2005"
gp.Buffer_analysis(“Highway.shp",
"BuffHighway.shp", "100 feet")

• Notes
–If specifying units, make the argument a string

• If units not specified, input feature class units used

Example script
Import COM support
import win32com.client
Create the Geoprocessor object
gp = win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1")

roads = "C:/Data/Florida/ROADS.shp"
Out_Buff = "C:/Data/Florida.mdb/ROADS_Buffer"
citylimit = "C:/Data/Florida/citylimit.shp"
Out_Clip = "C:/Data/Florida.mdb/BUFF_Clip“

Process: Buffer...
gp.Buffer_analysis(roads, Out_Buff, "10", "FULL", "ROUND")
Process: Clip...
gp.Clip_analysis(Out_Buff, citylimit, Out_Clip)

Learning how to populate tool arguments

ArcGIS Desktop Help
If help is not detailed
enough, export the
tool from a model to
a script

If I want to use the UNION tool,
how would I know that the inputs
are separated by semicolons?

Demonstration 3

• Where to find help – ArcGIS Desktop Help
– Geoprocessing tools
– Geoprocessor object methods

• Running the a geoprocessing tool

Batch Processing
and advanced Scripting functionality

Batch processing

• Scripts are ideally suited for batch processing
• Example: Clip all shapefiles in a folder to a boundary

• Rerun script when new data is added to folder

Batch processing
script

Batch processing
script

Listing data

• Enumeration: Lists of objects without a known count
• Use a looping structure to process one object at a time

– ListFeatureClasses (Wildcard (optional), Type (optional))
#return a list of shapefiles in a workspace
gp.workspace = "C:\\Yellowstone"
fcs = gp.ListFeatureClasses("*", "all")

• Examples of Enumerations
– ListFeatureClasses
– ListFields
– ListTables
– List Indexes
– ListRasters
– ListWorkspaces
– ListDatasets

fcs = all shapefiles
in C:\Yellowstone

Looping

• While a condition is true
gp.workspace = "C:\\Yellowstone"
fcs = gp.ListFeatureClasses ("*", "all")
fc = fcs.next()
clipfc = "C:\\Yellowstone\\studyarea.shp"
outws = "C:\\Yellowstone\\model"
while fc != "":

gp.clip_analysis(fc, clipfc, outws + "\\" + fc)
fc = fcs.next()

• Loop is defined by indentation in Python
• Indentation is a language construct in Python

– Needs to be consistent
– Use <Tab> or spaces

Making Scripts Dynamic

Making scripts dynamic

• Scripts can be static or dynamic
– Up until now, all your scripts have been static

• Can add arguments to make a script dynamic
– Let user run from ArcToolbox

• Two ways to create arguments
– Python has a function called sys.argv[]
– The Geoprocessor has a method called
GetParameterAsText()

Creating arguments: sys.argv[]

• Need to import the sys module
• First argument starts at 1
• Run from ArcToolbox, PythonWin, or Command

Prompt
• Limit to the number of characters
import win32com.client, sys
gp = win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1")

gp.Workspace = sys.argv[1]
bufFC = sys.argv[2]
bufOut = sys.argv[3]
bufDist = sys.argv[4]

1

2

3

4

Why use parameters with script tools?

• Makes scripts more flexible
• Dynamically assigns script args

– Workspace
– Feature classes
– String, numbers

• Write scripts to capture arguments

import win32com.client, sys
gp = win32com.client.Dispatch("esriGeoprocessing.gpDispatch.1")

gp.workspace = sys.argv[1] # first argument
buffc = sys.argv[2] # second argument
buffoutput = sys.argv[3]
buffdistance = sys.argv[4]

Attaching a script to a tool

• Use a custom toolbox
– System toolboxes are Read-only

• Right-click the toolbox and click Add > Script

Parameter properties

Display
name

Data type
(workspace)

Required/
Optional Input/

Output

Demonstration 4

• Add parameters to a script
– Sys.argv[]

Resources for learning Python

• Books
– Learn to Program Using Python
– Learning Python
– The Quick Python Book
– Python, Essential Reference

• Web sites
– The Python Foundation (www.python.org): Tutorials,

documentation

• ESRI Instructor-led course
– Introduction to Geoprocessing Scripts Using Python

• Writing Geoprocessing Scripts with ArcGIS .pdf
• Online help

Thanks!!

